

VibMobile

Mobile Vielkanal-Messtechnik

VibMobile ist die neue Messgeräteplattform für universelle, mobile Messapplikationen - von der kontinuierlichen Erfassung dynamischer Messgrößen, über Schwingungs- und Schallanalysen bis hin zur Messung von Prozess-Signalen. Der modulare Aufbau und der integrierte Embedded Computer machen den VibMobile zur flexiblen und leistungsstarken Messtechnik-Lösung.

Features

- Mobiles Tisch-Gerät mit optionalem Akku
- 8 64 analoge Eingänge, 24 Bit, 102,4/204,8/256 kHz max. Abtastrate je Kanal
- 2 34 analoge Ausgänge, 24 Bit
- 2 34 Tacho-Eingänge
- Embedded CPU-Board mit Intel Core i7
- Slots für CompactPCle Erweiterungsboards
- Synchronization mehrerer VibMobile-Garäte

Analogeingänge

Beim VibMobile und seinen Messwerterfassungsmodulen wurde neueste IC-Technologie eingesetzt. Diese garantiert hervorragende Messgenauigkeiten und eine ausgezeichnete Echtzeitperformance. Jeder Kanal ist mit einem eigenen 24-Bit Sigma-Delta A/D-Wandler mit einer maximalen Abtastrate von 102,4 kHz 204,8 kHz oder 256 kHz bestückt. Dadurch werden alle Kanäle exakt zeitgleich abgetastet. Die Eingangskanäle können zwischen differentiell und single-ended umgeschaltet werden. Für ICP/IEPE Schwingungssensoren wird die notwendige 4 mA / 24 V Versorgung bereitgestellt. Das für die Bemessung von Dehnmessstreifen entwickelte Brücken-Eingangsmodul unterstützt die Messmodi Voll-, Halb- und Viertelbrücke. Zur Automatisierung von Mess-Prozessen können darüber hinaus mit Hilfe der TEDS-Funktion (Transducer Electronic Data Sheet) Aufnehmerdaten wie Empfindlichkeit, Kalibrierung und Seriennummer ausgelesen werden.

Analogausgänge

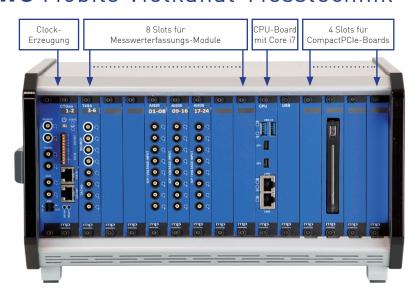
Die D/A-Wandler der Analogausgänge besitzen ebenfalls eine Auflösung von 24-Bit und werden von der gleichen Master-Clock wie die Eingänge getaktet. Im Störungsfall fährt das Ausgangssignal auf einer definierten Rampe auf Null, um Beschädigungen des Prüflings oder der Prüfanlage zu vermeiden.

Skalierbarkeit und synchroner Betrieb

Bei höheren Kanalzahlen wird die Datenerfassung über alle VibMobile Geräte und Kanäle hinweg exakt synchronisiert. Dies geschieht mit einer "Daisy-chain" Verbindung. Die einzelnen VibMobile können damit dicht an die Messstellen herangeführt und über größere Entfernungen synchron betrieben werden.

Leistungsstarker Embedded Computer

Der VibMobile ist mit einem leistungsfähigen aber energiesparenden Embedded Computer im CompactPCIe-Format ausgestattet. Eine Core i7 CPU sorgt für die sichere und unterbrechungsfreie Datenübertragung auf ein internens Speichermedium oder den Abtransport über ein GigaBit LAN-Interface. Über weitere Slots kann das System durch Feldbus- oder I/O-Boards erweitert werden.


Mobil und kompakt

Der VibMobile beherbergt trotz seiner kompakten Bauform eine Menge Technik. CPU-Board und Messtechnik-Module sind hochintegriert. Chassis und Gehäuse werden komplett aus Aluminium gefertigt, so dass das Messgerät tatsächlich transportabel ist. Es verfügt über eine eigene Spannungsversorgung sowohl mit Mehrbereichs-Wechselpannungs- als auch mit Gleichspannungseingang. Optional kann der VibMobile mit einem Akku-Einschub bestückt und einige Stunden völlig autark betrieben werden.

Softwareunterstützung

Für Programmierer steht eine komfortable Windows API zur Entwicklung eigener Messtechnik-Applikationen unter C/C++ zur Verfügung. Messtechniker können auf eine Reihe von LabVIEW Beispiel-VIs (Virtual Instruments) oder den leistungsfähigen DASYLab Treiber zurückgreifen. Für einfache Messaufgaben befindet sich die Messsoftware dydaqsoft im Lieferumfang, die alle Grundfunktionen der VibMobile Geräte unterstützt.

VibMobile Mobile Vielkanal-Messtechnik

Spezifikationen

Analogeingänge - Module Al810 / AlBR810 / Al820		Tacho-Eingänge - Modul T4S4	
Anzahl je Steckmodul	8 single-ended oder differentiell	Anzahl je Steckmodul	4 single-ended oder differentiell
A/D-Wandler	Sigma-Delta	Eingangsspannungs-Bereich	± 10V
Auflösung	24 Bit	Trigger-Schwelle	-10V ~ +10V, programmierbar
Abtastrate (max.) je Kanal		Counter	32 Bit
- AI810 / AIBR810	102,4 kHz	Basis-Auflösung	42 ns
- AI820	204,8 oder 256 kHz	Digitale I/O	
Eingangsspannungs-Bereiche		Anzahl	4 Eingänge / 4 Ausgänge (isoliert)
- AI810	± 10 V	Pegel	TTL, (H: > 2,4V / L: < 0,8V)
- AIBR810	± 10/100 mV, ± 10 V	Synchronisation	
- AI820	± 100/316 mV, ± 1/3,16/10/20 V	Clock Out	Master Clock + Sync Clock Out
Brücken-Modi AIBR810	Viertel-, Halb-, Vollbrücke	Clock In	Master Clock + Sync Clock In
Kopplung	AC/DC je Kanal umschaltbar	Master/Slave	programmierbar
Signal-To-Noise-Ratio	> 105 dB bei ± 10 V	Signalprocessing	
Filter	digital - je Kanal selektierbar	Digitale Signalprozessoren je Modul	2, Floating Point, 300 MHz Taktrate
ICP/IEPE Sensor-Versorgung	4 mA @ 24 V, schaltbar je Kanal	Generell	
TEDS	je Kanal selektierbar	CPU	Core i7
Analogausgänge - Modul T4S4		Kommunikations-Interface	1000Base-T Ethernet (RJ-45)
Anzahl je Steckmodul	4 single-ended oder differentiell	Kalibrierung	interne Quelle
Auflösung	24 Bit	Versorgungsspannung	100 ~ 240 V _{AC} / 12 ~ 15 V _{DC} (max. 200 W)
Update-Rate je Kanal	102,4 kHz	Arbeitstemperaturbereich	0 bis +40 °C
Ausgangsspannungs-Bereich	± 10V	Lagertemperaturbereich	-25 bis +70 °C
Kopplung	DC	Gehäuse	Aluminium
Ausgangswiderstand	50 Ω	Abmessungen (B x H x T)	343 x 192 x 395 mm
Signal-To-Noise-Ratio	> 100 dB	Gewicht (mit Akku und voll bestückt)	11,6 kg

V02 2017-02 Technische Angaben können geringfügig abweichen!

gıbım

gbm mbH \cdot Lehmkuhlenweg 16 \cdot 41065 Mönchengladbach Fon 02161.30899.0 \cdot Fax 02161.30899.1 Vertrieb: sales@gbm.de \cdot Support: support@gbm.de www.qbm.de

Bestellinformationen

Destettinormationen			
Artikel-Nr.	Beschreibung		
VM-BASE	VibMobile Basis-Gerät CPU-Board und 8 Modul-Slots		
VM-AI810	VibMobile 8-Kanal Analog-Eingangs- modul mit 102,4 kHz je Kanal		
VM-AI820	VibMobile 8-Kanal Analog-Eingangs- modul mit 204,8 kHz je Kanal		
VM-AIBR810	VibMobile 8-Kanal Brücken-Eingangs- modul mit 102,4 kHz je Kanal		
VR-T4S4	VibMobile Tacho-Modul mit 4 Tacho- Eingängen und 4 Analog-Ausgängen		

VibPilot-E ist ein Produkt der m+p international Mess- und Rechnertechnik GmbH