

VibRunner

Hochgenaue Vielkanal-Messtechnik

VibRunner ist die neue Messgeräteplattform für universelle Messapplikationen – von der kontinuierlichen Erfassung dynamischer Messgrößen, über Schwingungs- und Schallanalysen bis hin zur Messung von Prozess-Signalen. Der modulare Aufbau und die leistungsfähige Ethernet Host-Schnittstelle machen den VibRunner zur flexiblen Messtechnik-Lösung.

Features

- Tisch-Gerät oder Einbau in ein 19" Rack
- 8 24 analoge Eingänge , 24 Bit, 102,4/204,8/256 kHz max. Abtastrate je Kanal
- 4 12 analoge Ausgänge, 24 Bit
- 4 12 Tacho-Eingänge
- DSP-gestützte Echtzeitverarbeitung
- GigaBit Ethernet Host-Schnittstelle
- Synchronization mehrerer VibRunner

Analogeingänge

Beim VibRunner und seinen Funktionsmodulen wurde neueste IC-Technologie eingesetzt. Diese garantiert hervorragende Messgenauigkeiten und eine ausgezeichnete Echtzeitperformance. Jeder Kanal ist mit einem eigenen 24-Bit Sigma-Delta A/D-Wandler mit einer maximalen Abtastrate von 102,4 oder 204,8 kHz bestückt. Dadurch werden alle Kanäle exakt zeitgleich abgetastet. Die Eingangskanäle können zwischen differentiell und single-ended umgeschaltet werden, sodass mit dem VibRunner auch potentialfrei angeschaltet werden kann. Für ICP/IEPE Schwingungssensoren wird die notwendige 4 mA / 24 V Versorgung bereitgestellt. Das für die Bemessung von Dehnmessstreifen entwickelte Brücken-Eingangsmodul unterstützt die Messmodi Voll-, Halb- und Viertelbrücke. Zur Automatisierung von Mess-Prozessen können darüber hinaus mit Hilfe der TEDS-Funktion (Transducer Electronic Data Sheet) Aufnehmerdaten wie Empfindlichkeit, Kalibrierung und Seriennummer ausgelesen werden.

Analogausgänge

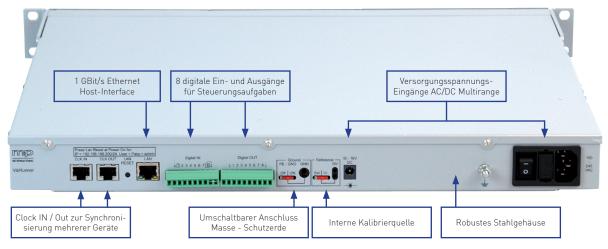
Die D/A-Wandler der Analogausgänge besitzen ebenfalls eine Auflösung von 24-Bit und werden von der gleichen Master-Clock wie die Eingänge getaktet. Im Störungsfall fährt das Ausgangssignal auf einer definierten Rampe auf Null, um Beschädigungen des Prüflings oder der Prüfanlage zu vermeiden.

Skalierbarkeit und synchroner Betrieb

Bei höheren Kanalzahlen wird die Datenerfassung über alle VibRunner Frontends und Kanäle hinweg exakt synchronisiert. Dies geschieht mit einer "Daisy-chain" Verbindung. Die einzelnen VibRunner können damit dicht an die Messstellen herangeführt und über größere Entfernungen synchron betrieben werden.

Leistungsstarke Ethernet Host-Schnittstelle

Die Kommunikation mit dem Messrechner geschieht über eine GigaBit Ethernet-Schnittstelle. Um die sichere und unterbrechungsfreie Datenübertragung auch bei hohen Kanalanzahlen zu gewährleisten, werden die VibRunner in ein eigenes, von anderen Netzen unabhängiges Subnetz integriert.


Tischgerät oder im Rack montiert

Der VibRunner ist modular aufgebaut. Das Basisgehäuse ist ein 1 HE 19" Gehäuse für bis zu drei Funktionsmodule, die frontseitig montiert werden. Mit Füßen versehen, lässt es sich sowohl als Tischgerät verwenden wie auch - mit entsprechenden Montagewinkeln versehen - in ein 19" Rack einbauen. Es verfügt über eine eigene Spannungsversorgung sowohl mit Mehrbereichs-Wechselpannungs- als auch mit Gleichspannungseingang. Die Kühlung des VibRunners erfolgt über einen hochwertigen, laufruhigen Lüfter, dessen Drehzahl temperaturabhängig geregelt wird und vom Messrechner bei sensiblen Schallmessungen auch komplett abgeschaltet werden kann.

Softwareunterstützung

Für Programmierer steht eine komfortable Windows API zur Entwicklung eigener Messtechnik-Applikationen unter C/C++ zur Verfügung. Messtechniker können auf eine Reihe von Beispiel-VIs (Virtual Instruments) zurückgreifen, die die Anbindung aller Gerätefunktionen an LabVIEW stark vereinfachen.

VibRunner Hochgenaue Vielkanal-Messtechnik

Spezifikationen

Analogeingänge - Module Al810 / AlBR810 / Al820		Tacho-Eingänge - Modul T4S4	
Anzahl je Steckmodul	8 single-ended oder differentiell	Anzahl je Steckmodul	4 single-ended oder differentiell
A/D-Wandler	Sigma-Delta	Eingangsspannungs-Bereich	± 10V
Auflösung	24 Bit	Trigger-Schwelle	-10V ~ +10V, programmierbar
Abtastrate (max.) je Kanal		Counter	32 Bit
- AI810 / AIBR810	102,4 kHz	Basis-Auflösung	42 ns
- Al820	204,8 oder 256 kHz	Digitale I/O	
Eingangsspannungs-Bereiche		Anzahl	8 Eingänge / 8 Ausgänge (isoliert)
- AI810	± 10 V	Pegel	TTL, (H: > 2,4V / L: < 0,8V)
- AIBR810	± 10/100 mV, ± 10 V	Synchronisation	
- Al820	± 100/316 mV, ± 1/3,16/10/20 V	Clock Out	Master Clock + Sync Clock Out
Brücken-Modi AIBR810	Viertel-, Halb-, Vollbrücke	Clock In	Master Clock + Sync Clock In
Kopplung	AC/DC je Kanal umschaltbar	Master/Slave	programmierbar
Signal-To-Noise-Ratio	> 105 dB bei ± 10 V	Signalprocessing	
Filter	digital - je Kanal selektierbar	Digitale Signalprozessoren je Modul	2, Floating Point, 300 MHz Taktrate
ICP/IEPE Sensor-Versorgung	4 mA / 24 V, schaltbar je Kanal	Generell	
TEDS	je Kanal selektierbar	Prozessor	DSP TMS320C6452 mit 720 MHz
Analogausgänge - Modul T4S4		Host Interface	1000Base-T Ethernet (RJ-45)
Anzahl je Steckmodul	4 single-ended oder differentiell	Kalibrierung	interne Quelle
Auflösung	24 Bit	Versorgungsspannung	100 ~ 240 V _{AC} (56 W) / 10 ~ 19 V _{DC} (60 W)
Update-Rate je Kanal	102,4 kHz	Arbeitstemperaturbereich	0 bis +40 °C
Ausgangsspannungs-Bereich	± 10V	Lagertemperaturbereich	-25 bis +70 °C
Kopplung	DC	Gehäuse	Stahl, Frontblenden aus Aluminium
Ausgangswiderstand	50 Ω	Abmessungen (B x H x T)	440 x 44,45 x 435 mm
Signal-To-Noise-Ratio	> 100 dB	Gewicht (voll bestückt)	5,2 kg

V04 2016-01 Technische Angaben können geringfügig abweichen!

gıbım

gbm mbH · Lehmkuhlenweg 16 · 41065 Mönchengladbach Fon 02161.30899.0 · Fax 02161.30899.1 Vertrieb: sales@gbm.de · Support: support@gbm.de www.qbm.de

Bestellinformationen

Artikel-Nr.	Beschreibung
VR-BASE-3	VibRunner Basis-Gerät mit 3 Slots
VR-Al810	VibRunner 8-Kanal Analog-Eingangs- modul mit 102,4 kHz je Kanal
VR-AI820	VibRunner 8-Kanal Analog-Eingangs- modul mit 204,8 kHz je Kanal
VR-AIBR810	VibRunner 8-Kanal Brücken-Ein- gangsmodul mit 102,4 kHz je Kanal
VR-T4S4	VibRunner Tacho-Modul mit 4 Tacho- Eingängen und 4 Analog-Ausgängen

VibPilot-E ist ein Produkt der m+p international Mess- und Rechnertechnik GmbH